3.417 \(\int \frac{\sec ^{\frac{3}{2}}(c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=126 \[ \frac{2 (A b-a B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b d (a+b)}+\frac{2 B \sin (c+d x) \sqrt{\sec (c+d x)}}{b d}-\frac{2 B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d} \]

[Out]

(-2*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b*d) + (2*(A*b - a*B)*Sqrt[Cos[c + d*x
]]*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b*(a + b)*d) + (2*B*Sqrt[Sec[c + d*x]]*Sin[c
 + d*x])/(b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.400632, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.212, Rules used = {4033, 4106, 3849, 2805, 12, 3771, 2639} \[ \frac{2 (A b-a B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b d (a+b)}+\frac{2 B \sin (c+d x) \sqrt{\sec (c+d x)}}{b d}-\frac{2 B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x]

[Out]

(-2*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b*d) + (2*(A*b - a*B)*Sqrt[Cos[c + d*x
]]*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b*(a + b)*d) + (2*B*Sqrt[Sec[c + d*x]]*Sin[c
 + d*x])/(b*d)

Rule 4033

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[(B*d^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2))/(
b*f*(m + n)), x] + Dist[d^2/(b*(m + n)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 2)*Simp[a*B*(n - 2)
+ B*b*(m + n - 1)*Csc[e + f*x] + (A*b*(m + n) - a*B*(n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e,
f, A, B, m}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[n, 1] && NeQ[m + n, 0] &&  !IGtQ[m, 1]

Rule 4106

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sec ^{\frac{3}{2}}(c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx &=\frac{2 B \sqrt{\sec (c+d x)} \sin (c+d x)}{b d}+\frac{2 \int \frac{-\frac{a B}{2}-\frac{1}{2} b B \sec (c+d x)+\frac{1}{2} (A b-a B) \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))} \, dx}{b}\\ &=\frac{2 B \sqrt{\sec (c+d x)} \sin (c+d x)}{b d}+\frac{2 \int -\frac{a^2 B}{2 \sqrt{\sec (c+d x)}} \, dx}{a^2 b}+\frac{(A b-a B) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{b}\\ &=\frac{2 B \sqrt{\sec (c+d x)} \sin (c+d x)}{b d}-\frac{B \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx}{b}+\frac{\left ((A b-a B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{b}\\ &=\frac{2 (A b-a B) \sqrt{\cos (c+d x)} \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{b (a+b) d}+\frac{2 B \sqrt{\sec (c+d x)} \sin (c+d x)}{b d}-\frac{\left (B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{b}\\ &=-\frac{2 B \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{b d}+\frac{2 (A b-a B) \sqrt{\cos (c+d x)} \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{b (a+b) d}+\frac{2 B \sqrt{\sec (c+d x)} \sin (c+d x)}{b d}\\ \end{align*}

Mathematica [A]  time = 1.33576, size = 125, normalized size = 0.99 \[ -\frac{2 \cos (2 (c+d x)) \sqrt{-\tan ^2(c+d x)} \csc (c+d x) \sec (c+d x) \left ((A b-B (a+b)) \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right ),-1\right )+(A b-a B) \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right |-1\right )+b B E\left (\left .\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right |-1\right )\right )}{b^2 d \left (\sec ^2(c+d x)-2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x]

[Out]

(-2*Cos[2*(c + d*x)]*Csc[c + d*x]*(b*B*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1] + (A*b - (a + b)*B)*EllipticF
[ArcSin[Sqrt[Sec[c + d*x]]], -1] + (A*b - a*B)*EllipticPi[-(b/a), -ArcSin[Sqrt[Sec[c + d*x]]], -1])*Sec[c + d*
x]*Sqrt[-Tan[c + d*x]^2])/(b^2*d*(-2 + Sec[c + d*x]^2))

________________________________________________________________________________________

Maple [A]  time = 3.801, size = 325, normalized size = 2.6 \begin{align*} -{\frac{1}{d}\sqrt{- \left ( -2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -2\,{\frac{ \left ( Ab-Ba \right ) a\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}}{b \left ({a}^{2}-ab \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2\,{\frac{a}{a-b}},\sqrt{2} \right ) }+2\,{\frac{B \left ( -\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) }{b \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \left ( 2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) }} \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*(A*b-B*a)/b/(a^2-a*b)*a*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/
2*d*x+1/2*c),2*a/(a-b),2^(1/2))+2*B/b*(-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic
E(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*(-2*sin(1/2*d*x+1/2*c)^4+
sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c
)^2-1))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac{3}{2}}}{b \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^(3/2)/(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac{3}{2}}}{b \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^(3/2)/(b*sec(d*x + c) + a), x)